Python Exam Practice Questions:

```
Name 2 errors with this piece of code:
import numpy
y = np.arange(3, -3, 2)
Under what condition will the print
statement be executed:
i = ?
if i == 0 and i == 1:
 print("EXECUTED SUCCESSFULLY")
Under what condition will the print
statement be executed:
i = ?
if i == 0 or i == 1:
 print("EXECUTED SUCCESSFULLY")
What is executed here:
for i in range(10):
 if i % 2 == 0:
   print(i)
What is printed here:
import numpy as np
val = [0, 10, 2, 4, 7, 1, 4, 6, 8]
a = np.min(val)
b = np.quantile(val, 0.25)
c = np.quantile(val, 0.50)
d = np.quantile(val, 0.75)
e = np.max(val)
print(a + b + c + d + e)
print(a,b,c,d,e)
Which values are impossible for this
to output:
np.random.rand(2)
a) 0.0
b) 0.25
c) 1.99
d) 2.0
What do these commands do to a graph?
plt.xlabel( 'dimension 1' );
plt.ylabel( 'dimension 2' );
What is the output:
```

<pre>tmp = np.zeros((3 // 2) * 8)</pre>	
print(tmp)	
What is the output (hint: order of	
operations):	
print((np.mean([1, 4, 7]) * 3) ** 1/2)	
Write a function that concatenates two	
lists.	
$[a^{\prime}, b^{\prime}, c^{\prime}], [1, 2, 3] \rightarrow [a, b, c, 1, 2, 3]$	
What is wrong with this code for this	
diffential equation with $u(1) = 3$:	
t = Symbol("t")	
u = Function("u")(u)	
de = Eq(u.diff(l) + 1 / l * u, np.e ** +)	
()	
solution - dsolve(de u	
solution = usolve(ue, u, u)	
What is printed here:	
weight = $[0, 1, 2, 3, 4, 5]$	
G = weight[0:2]	
V = weight[2:4]	
W = weight[4:]	
print(V, G, W)	
What is wrong with this function?	
function a(n):	
n = a / 2	
return n	
What does this function do?	
<pre>def mystery_func(n, a):</pre>	
it n / a == 0:	
return True	
else:	
return False	
Am you going to nail this exam?	

<u>A Math Midterm Python Question Review:</u>

16. (1 point) Running the following lines of code:

import numpy 3*2**numpy.cos(numpy.pi)

would result in what output from Python?

A. 3.0	3° (05 TT	h in the
B. 2.0	0	
C. 1.0	7 Cos 11	يطبح ومسير فالم
D. 1.5	9(0)	
E.0.0		

17. (1 point) Running the following lines of code:

```
import numpy
x = numpy.linspace( -5, 5, 99 )
print( x[49] )
```

would result in what output from Python?

A. -0.1 B. 0.0 C. 0.1 D. -0.5 E. 0.5 18. (1 point) Running the following lines of code:

a = 0
for i in range(3):
 a = i+3
print(a)

would result in what output from Python?

Α.	10	K = 0	
B.	3	, a = 0+3	
C.	2	2 a= 1+3	
D.	8	1 a = 243	
E.	5		

19. (1 point) Consider the differential equation -u'(t) + u(t) = 0. Which line of code would correctly define this equation in SymPy and assign to a variable de?

A. de = Eq(-u.diff(t) - u, t)
B. de = Eq(-u.diff(t) - u, 0)
C. de = Eq(u.diff(t) - t*u, 0)
D. None of the other options provided is correct.

E. de = Function('-u.diff(t)- u', '0')

ID:

Name: Grace Kebbe

251244551

Page 7 of 12